Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Richard Becker^a* and Helmuth Berger^b

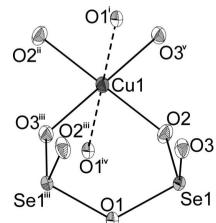
^aInorganic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden, and ^bInstitut de Physique de la Matière Complexe, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Correspondence e-mail: richard@inorg.su.se

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{Cu-O}) = 0.004 \text{ Å}$ R factor = 0.028 wR factor = 0.070 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Reinvestigation of CuSe₂O₅

The crystal structure of the title compound, copper(II) diselenium(IV) pentoxide [Meunier, Svensson & Carpy, (1976). Acta Cryst. B**32**, 2664–2667], has been reinvestigated and confirmed to much higher precision, and anisotropic displacement parameters has been refined. The structure consists of CuO₄ planar squares and Se₂O₅ E_2 (E = lone pair) dimers. The Cu atom has site symmetry $\overline{1}$ and one O atom has site symmetry 2.

Comment

The crystal structure of CuSe_2O_5 , (I), was determined by Meunier *et al.* (1976). The structure has been reinvestigated and here we report a redetermination with improved precision and anisotropic displacement parameters. The R(F) residual has decreased from 0.06 (Meunier *et al.*, 1976; Meunier & Bertaud, 1976) to 0.028 for the present study.

The structure consists of CuO₄ planar squares (Cu site symmetry $\overline{1}$) with normal Cu–O distances (Table 1). Two additional O atoms at 2.730 (3) Å from Cu would complete a distorted octahedral CuO₆ coordination, but these two O atoms are positioned outside the primary coordination sphere (Fig. 1). The Se atom coordinates to three O atoms and the stereochemically active lone pair, *E*, completes an SeO₃*E* tetrahedron (Fig. 1). Two SeO₃*E* tetrahedra are connected *via* corner-sharing at O1 (site symmetry 2) to form Se₂O₅*E*₂ dimers (or Se₂O₅²⁻ diselenite groups). The CuO₄ squares are connected to the Se₂O₅*E*₂ dimers *via* corner-sharing to form chains along the *c* axis. The chains are arranged to form layers parallel to the *bc* plane, and the longer Cu···O octahedral 'bond' connects the chains. The layers are, in turn, separated by the stereochemically active lone pair on Se^{IV} (Fig. 2).

codes: (i) x, 1 + y, z; (ii) -x, 1 - y, 1 - z; (iii) -x, y, $\frac{3}{2}$ - z; (iv) -x, -y,

Figure 1 \forall Local coordination around Cu1 and the diselenite group. Symmetry

© 2006 International Union of Crystallography All rights reserved Received 27 October 2006 Accepted 11 November 2006

1-z; (v) x, $1-y-\frac{1}{2}+z$.

1839 measured reflections 655 independent reflections 571 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.071$

 $\theta_{\rm max} = 29.9^{\circ}$

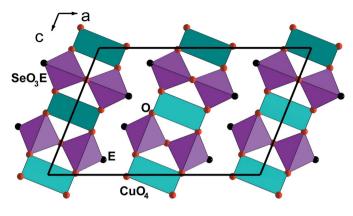


Figure 2 Structure of (I), viewed down [010].

The diselenite Se_2O_5E_2 dimer is a common building block in selenites and exists in *e.g.* orthorhombic ZnSe_2O_5 (Meunier & Bertaud, 1974) and CoSe_2O_5 (Harrison *et al.*, 1992). The Se_2O_5 dimer can take different arrangements, *e.g.* with the two lone pairs being positioned either *cis* or *trans*, but the Se–O bonds are often similar in distance. The bridging Se–O bond is usually around 1.8 Å and the terminal bonds are usually much shorter (around 1.65 Å). For the transition metal diselenites noted above, the complete Se_2O_5 group is generated by twofold symmetry, but for some of the alkaline earth diselenites, *e.g.* BaSe_2O_5 (Giester & Lengauer, 1992) and CaSe_2O_5 (Delage *et al.*, 1982), two crystallographically different Se^{IV} atoms are present, which allows for more variations in the geometry of the anion.

Experimental

The starting materials used were CuO (99.7%, Alfa Aesar), SeO₂ (99.4% Alfa Aesar), CuBr₂ (99% Alfa Aesar) and HBr (electronic grade Carba-Gas). The single crystals used in this study were grown from the approximately stoichiometric molar ratios CuO:SeO₂:CuBr₂ = 1:1:1. The starting materials, in powder form, were placed in one end of the reaction tube, which was then evacuated to 10^{-5} Torr. HBr electronic grade gas at room temperature was subsequently introduced into this tube and the tube was then sealed off. For crystallization of green CuSe₂O₅, the ampoule was subjected to a chemical vapour transport reaction in a temperature gradient from 753 K to 573 K.

Crystal data

CuO₅Se₂ $M_r = 301.46$ Monoclinic, C2/c a = 12.3869 (19) Å b = 4.8699 (7) Å c = 7.9917 (13) Å $\beta = 111.953$ (15)° V = 447.13 (12) Å³ Z = 4 D_x = 4.478 Mg m⁻³ Mo Kα radiation μ = 21.08 mm⁻¹ T = 292 (3) K Needle, green 0.32 × 0.08 × 0.04 mm

Data collection

Oxford Diffraction Xcalibur3 diffractometer
ω scans at different φ
Absorption correction: numerical
[X-RED32 (Stoe, 2001) and
X-SHAPE (Stoe, 1999)]
$T_{\min} = 0.218, \ T_{\max} = 0.642$
Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.070$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.99	$\Delta \rho_{\rm max} = 1.15 \text{ e } \text{\AA}^{-3}$
655 reflections	$\Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$
40 parameters	Extinction correction: SHELXL97
	Extinction coefficient: 0.0038 (6)

Table 1 Selected bond lengths (Å).

Se-O2	1.662 (3)	Cu-O2	1.938 (3)
Se-O3	1.673 (3)	Cu-O3 ⁱ	1.949 (3)
Se-O1	1.837 (2)	Cu-O1 ⁱⁱ	2.730 (3)

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) x, y + 1, z.

The maximum difference peak is located 0.80 Å from Cu1; the deepest difference hole is located 0.91 Å from Se1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2005); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*.

This work has in part been carried out with financial support from the Swedish Research Council. The work in Lausanne was supported by the Swiss National Science Foundation (SNSF) and by the MaNEP.

References

- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e, Crystal Impact GbR, Bonn, Germany.
- Delage, C., Carpy, A. & Goursolle, M. (1982). Acta Cryst. B38, 1278-1280.
- Giester, G. & Lengauer, C. L. (1992). Monatsh Chem. 159, 445-454.
- Harrison, W. T. A., McManus, A. V. P. & Cheetham, A. K. (1992). Acta Cryst. C48, 412-413.
- Meunier, G. & Bertaud, M. (1974). Acta Cryst. B30, 2840-2843.
- Meunier, G. & Bertaud, M. (1976). J. Appl. Cryst. 9, 364-366.
- Meunier, G., Svensson, C. & Carpy, A. (1976). Acta Cryst. B32, 2664-2667.
- Oxford Diffraction (2005). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.171. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe (1999). X-SHAPE. Revision 1.06. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe (2001). X-RED32. Version 1.22. Stoe & Cie GmbH, Darmstadt, Germany.